
Contract Deliverable for Task 22:

Alternative Technical Architectures for the
Integrated Data Base for

Mental Health and Substance Abuse
Treatment Service Project

Under CSAT/CMHS
Contract # 270-96-007

Project Officer: Jon Gold

June 16, 1997

TABLE OF CONTENTS

Executive Summary.. 1
System Architectures.. 2
The Problem to be Solved .. 7
Identifying Candidate Architectures.. 12

The Relational Model ... 12
SAS.. 12
Other Candidates... 13

Relational Databases - Pros and Cons .. 14
SAS - Pros and Cons ... 17
Conclusion.. 20

LIST OF FIGURES

Figure 1: Data Sources by State... 8
Figure 2: Integrating Medicaid and MH/AOD Data, Diagram............................ 10
Figure 3: Integrating Medicaid and MH/AOD Data, Narrative Description 11

1

Executive Summary

This document addresses alternative technical architectures for the Integrated Data

Base for Mental Health and Substance Abuse Treatment Service project. We start by

defining system architecture, beginning with a well known universe of architectural

dimensions and narrowing the dimensions to a set that are appropriate for the current

discussion. We describe the problem we are seeking to solve under this contract, and

identify and discuss candidate technical architectures in the context of that problem. The

logical data model and the application architecture emerge as crucial, interrelated

dimensions.

We identify two candidate architectures, open relational database management systems

(RDBMS) and SAS, the Statistical Analysis System as likely candidates. The relational

database model and its accompanying query language, SQL, are obvious candidates

due to their broad acceptance and almost universal availability. The SAS language and

it’s underlying data model are also identified due to SAS’ strong set of procedural tools

and data analysis and display capabilities. Other database system architectures are

briefly described and rejected.

The relational approach has in its favor ubiquity, an open, interchangeable architecture,

an easy to use, well understood data model and a compact storage representation.

Major liabilities are potentially high cost, lack of useful data manipulation and

transformation tools, and weak analysis and display capabilities.

SAS excels in data manipulation and transformation, has strong analysis and display

tools, and has an efficient, if less compact, data storage representation. Liabilities are a

proprietary, quasi-relational data model, and a data manipulation language far less

known than SQL.

A dual, compromise, architecture is recommended in which SAS is used for intake,

transformation, storage and analysis. A highly relational structure, or set of views, is

imposed on the final data representation, so that the database or subsets thereof can

be exported either in SAS format (transport format) for import by other SAS sites or in

relational format (raw data with an ERWin schema), for import by popular RDBMS

packages.

2

System Architectures

The architecture of a system is the plan, embodied in a set of descriptive documents, for

producing and maintaining the system over the course of its useful life. Together these

plans provide a blueprint of the system to its owners, designers, builders and

maintenance staff. For the Integrated Data Base for Mental Health and Substance

Abuse Treatment Service project, the system architecture will be developed as a

comprehensive plan for the intake, transformation, structuring, representation, analysis

and export of the various information sources that will make up the database.

This document addresses alternative technical architectures. The issues are:

• to identify candidate architectures;

• to evaluate them along relevant dimensions; and

• to make a recommendation of a specific technical architecture.

An essential starting point is to determine what aspects of the architecture (plan) we

want to focus on in order to identify alternatives. There are a great number of different

ways of looking at database systems. We can provide an anchor for the discussion by

examining a comprehensive index of system architecture and identifying the elements

that are relevant to this stage of the project. The relevant elements will become the

dimensions along which we select and identify alternatives.

John Zachman is a well known practitioner in the field of system architecture. The

following grid has been interpreted from Zachman’s Enterprise Architecture Framework1.

Each column focuses on a particular aspect of the design, and each row designates a

set of design documents that move successively from the general, contextual point of

view at the top of the grid to the very detailed, specific point of view at the bottom.

Zachman’s framework contains an additional column, not shown, which focuses on

motivation2. This column was excluded because motivation for the project has already

been established by CSAT/CMHS. Although it could be argued that motivation is

architecturally relevant, it is clearly not an issue that must be addressed by the project

team. Zachman’s framework contains an additional row, also not shown in the grid,

1 Zachman, John A. “Enterprise Architecture: The Issue of the Century” Database Programming
and Design, 10(3), March 1997.

2 Zachman, J.A. “A Framework for Information Systems Architecture.” IBM Systems Journal,
26(3), 1987.

3

which contains the detailed representations of each column focus (such as source code)

which, in our opinion, should be dealt with retrospectively as part of the documentation

task.

Each cell in the grid constitutes a separate section in the architectural description

envisioned by Zachman. Some of these sections, such as Goals, may fit on a single

page. Others, such as system design, may be very lengthy. We present Zachman’s

table here because it goes a long way toward identifying a reasonable universe of

potential architectural elements. There are, however, only a few cells that are relevant to

the current discussion, and we have identified those cells in bold in the table below.

Data Function Network People Schedule

Scope
(Context)

Goals

List of things
important to the

project effort

Processes

List of processes
to be performed

Locations

List of locations in
which operations
will be performed

Organizations

List of
organizations

involved in effort

Milestones

List of events
significant to

implementation

Enterprise
Model

Semantic Model

Diagram of
relationship of

business entities
to data sources

Business Model

Diagram of
business

resources used to
perform processes

Logistics Network

Diagram of business
locations (nodes)

connected by
business links

(edges)

Work Flow Model

Chart of movement
of work product

from
organizational unit

to unit

Master Schedule

Timeline of
intervals between
business events

and cycles

Logical
System
Model

Logical Data
Model

Normalized view
of data entities

and
relationships

Application
Architecture

Use case sketch
of application
components

Distributed System
Architecture

Diagram of
hardware nodes &

communication
links

Human Interface

Chart of movement
of work product

from person (role)
to person

Process Structure

Cycles, updates
and movement of

data between
system components

Physical
Technology
Model

Physical Data
Model

Databases, tables,
keys, indexes,

constraints

System Design

Functional
specification of

application
processes, stored

procedures,
objects

System Architecture

Hardware
specifications.

Vendor supplied
software

specifications

Presentation
Design

Screen layouts,
forms, tabs and

menus

Control Structure

Estimated
execution times,
system response,
record locking

strategy

The first row lists descriptions that develop a context for the system. In our case, this

context has been set by the RFP, our proposal and the provisions of the contract. The

second row lists descriptions that establish the relationships between the business

4

entities cooperating in the endeavor. Once again, these issues have largely been

determined and are laid out in the contract between CSAT/CMHS and The MEDSTAT

Group (MEDSTAT) project team, with the notable exception of the cell labeled Work
Flow Model. In fact, a chart of the movement of work product from organizational unit to

unit (especially including producers and consumers of information within the States)

would be a very useful document for all parties involved. Its usefulness aside, there

seems little need to discuss alternative work flow models, as any one of a number of

diagrammatic representations would work very well.

Row 3 of Zachman’s table contains the essence of the architectural issues we are

currently confronting. The logical data model, the application architecture, and the

distributed system architecture have not yet been determined, reasonable alternatives

exist and we will identify, evaluate and recommend specifics in the sections that follow.

Row 4 of the table enumerates documents that provide a level of detail we are not yet

ready to address. We will, however, detail the physical data model, system design,

system architecture and control structure in our next deliverable, titled Technical
Architecture, and we’ll return to issues of presentation design in future deliverables

farther down the road.

Let’s look at each of the architectural elements identified above as being relevant to the

current discussion. We begin the logical data model. This issue deals with how,

logically (or conceptually) the data will be stored. Data will come to us in a variety of

formats, but almost always as either ASCII or EBCDIC raw data. Data might either be in

flat files (rectangular), or in hierarchical or compressed format, as in variable repeating

fields. One option (logical data model) is to leave the data exactly as received. Although

this option is easy to implement, it makes the subsequent manipulation and analysis

exceedingly difficult, and is therefore not a reasonable alternative. Here are other logical

data model options, with notes regarding their situational utility:

1. ASCII flat (rectangular) files. A simple representation useful for import into

other systems. Easy to edit data. Character data is visible and accessible.

Operations on numbers are time consuming because conversion to binary is

always required.

2. ASCII flat (rectangular) files with binary numeric data. Also simple, but

allows faster numeric operations. This is the representation used internally by

MEDSTAT’s MarketScan data. Requires custom programming for the

application architecture, but the investment pays off in speed. Limited options

for analysis, suitable for “production line” data manipulation.

5

3. Spreadsheet Systems. Simple, visual, appealing. Systems are inexpensive,

and easy to use. Excellent for small amounts of data (few hundred rows) but

cannot handle mid-size or large datasets.

4. Relational Database Management Systems. They are open,

interchangeable, and use a well known data model. Systems are expensive,

but produce uniform, easy to manipulate data sources. Optimized for search

and update queries.

5. Non-Relational Database Management Systems. Examples are Dbase,

Rbase, ISAM (Indexed Sequential Access Method) databases, hierarchical

and network databases. Generally not open and interchangeable since their

data models are proprietary. Queries are much more difficult to formulate.

Systems are inexpensive, but typically “top-out” at a particular volume of data

(i.e. are PC oriented).

6. Statistical Analysis Systems. Examples are SAS, SPSS, BMDP, DATA.

Excellent at analysis tasks but typically poor at transformation. Each uses a

proprietary internal logical data model, although some incorporate gateways,

such as ODBC or relational engines. Systems are expensive, but scale to

handle from small to very large amounts of information. Optimized for

summarization and analysis.

The preceding list is not exhaustive, but should serve to give the reader a flavor for the

types of logical data models that can be employed for data transformation and analysis.

The next relevant element from Zachman’s grid is the application architecture. As was

hinted at previously, the application architecture is largely determined by the logical data

model, at least in most cases. Perhaps the simplest example is to look at data stored in

a relational logical data model. It follows that the appropriate application architecture is

one centered on SQL, the relational Structured Query Language. If the logical data

model is a spreadsheet, such as Lotus 1-2-3, then the application architecture will utilize

Lotus macros. If the spreadsheet is Microsoft Excel, the application architecture will

utilize VBA, Visual Basic for Applications, Microsoft’s application scripting language. If

the logical data model is a SAS database, then the application architecture will utilize the

SAS data step language. The general principle being articulated here is that, in general,

implementations of data manipulation packages bundle a procedural language with the

data model, expressly suited to and optimized for the underlying data model.

This principle is not always the case, however. The first two data models described

above, ASCII data with and without binary numbers, have no default application

6

architecture associated with them. It is up to the developer to determine what

application architecture is most appropriate given particular design goals.

The last relevant element from Zachman’s grid is the distributed system architecture.

This design element determines how tasks will be partitioned across and between the

collection of physical systems that comprise the enterprise hardware environment. Once

again, these decisions generally flow from the choice of logical data model and

application architecture.

For example, almost all distributed systems based on the relational data model employ

some variant of the client/server design, starting with two-tier designs and moving

through multi-tier for larger, more complex systems. This is because the relational data

model and its associated SQL language excel at centralized execution of compact

standardized queries (but have no user interface capabilities), creating a natural

interface point with which to divide systems into a central SQL server, connected over a

network to multiple client programs supplying the user interface.

 There are counter-examples to this principle, but for the two data models and

application architectures we will examine most closely, distributed system architecture

will follow quite naturally.

7

The Problem to be Solved

In this section, we describe the problem to be solved. Very generally, we wish to

combine and integrate Medicaid and non-Medicaid sources of MH/AOD data obtained

from three states, Washington, Delaware and Oklahoma in order to facilitate

summarization and analysis of costs and utilization in their respective programs. A

previous deliverable, the Database Inventory3, described the variety, content and size of

various data sources within the States. A diagram summarizing the data sources, by

State, is shown in Figure 1 on the following page.

There are two significant problems that will have to be overcome in order to accomplish

this goal. The first is determining a logical structure for the resulting databases that will

allow all of the data obtained to be incorporated while remaining simple and regular

enough to enable the same or similar data summarization to take place within and

across States. The second is matching individual records that occur in Medicaid and

non-Medicaid settings. This is difficult because there is no universal identifier that can

be used to control the match, and those identifiers that are present and can be used,

such as name, address and social security numbers, are unreliable, duplicative and

subject to errors.

The difficulty of the first process was raised at the first expert panel meeting in

Washington DC in March, 1997. At that time a suggestion was floated that all data be

classified into one of three categories: clients, events and services, with one-to-many

relationships linking clients and events and linking events and services. The suggestion

was very well received by all of the participants at the meeting. Although this

representation is not perfect with regard to capturing the detail inherent in all of the data

sources inventoried, it works for most and is conceptually simple. At this point in time,

we are preceding under the assumption that we will restructure incoming data according

to the categories and relationships described above.

The second process involves attempting to match each Medicaid ID record with each

Non-Medicaid record and then scoring the tentative match result, that is, determining the

likelihood that the two ID records represent the same patient. Logically, we will combine

every record from one source with every record from the other source to produce the

Cartesian product of the two sources and rank the results. In actual practice, it will not

be necessary to produce a complete reflexive join, because we will want a match on at

least one of four main identification variables:

3 “Database Inventories and Profiles of State Mental Health, Substance Abuse, and Medicaid
Programs: Delaware, Oklahoma and Washington”. Contract Deliverable for Task 21. The
MEDSTAT Project Team. May 15, 1997.

8

Figure 1. Data Sources by State

Consumer
Episode
Evaluation
Organization
Staff

Delaware

Medicaid

Adult MH

Child MH
Oracle Database
Not sure how many discrete files
they will create for us.

Oklahoma

MH/SA

Medicaid

Enrollment
Provider
Claims/Encounters (1 or 2 files)

Contact
Admission/Intake
Service
Discharge
Provider-Agency
Provider-Staff

Washington

Medicaid

Mental
Health

Substance
Abuse

Umbrella
Agency

Enrollment
Provider
Claims/Encounters (1 or 2 files)

Client/Services (1 or 2
files)

Information on data structures,
not yet available.
Also unknown about how much
we will use here. Maybe only
linking reference files.

Regional Support Network/
Consumer Report Network
(series of files)

State Hospital System (series of files)

Integrated Database

State Files to Be Included

Enrollment
Provider
Claims/Encounters (1 or 2 files)

4/11/97

9

1. Medicaid ID (PIC code)

2. Social Security Number

3. Date of Birth and Gender

4. First and Last Name

Matches on additional main variables (including imperfect matches) and matches on

other variables, such as race, ethnicity, and ZIP code, will be used to score the match.

The data will be combined at the ID level, without any service data. For the Medicaid

data, this will be created from the Medicaid Eligibility file, while the non-Medicaid data

will use a demographic extract data set created in the early stages of processing.

Given the assumption that we will transform our incoming data into the clients, events,

and services structure described above, and that we will attempt to match individuals

across the Medicaid and non-Medicaid domains, we have sketched out a tentative

process for the effort.

Figure 2 is a diagram of the tentative plan for matching individuals and processing State

data into client, event and service files. Figure 3 is a brief narrative that describes the

steps in the diagram. We are not intending to convey that the process is final, complete

and comprehensive, because it certainly is not. The process will undoubtedly undergo

numerous revisions as we learn more about the data sources and the subsequent

analysis plan. We present this information because we want to demonstrate that the
first stage of database construction is not merely loading data. The task is much

more difficult and complex than that, and will require numerous programming and

processing steps. This fact, more than any other, will impact our choice of a logical data

model and application architecture. We will need to choose an architecture which will

allow us to accomplish this process in the simplest, least labor intensive way possible.

10

pgm100
Load the
Medicaid data

claim eligibility provider

pgm200
Load SA/AOD
data

substance abuse / mental health

samh_i samhact samhsrv

pgm300
combine and
de-dup clients

mapi

idlist

pgm400
create Medicaid
claim and Event
data sets

mdcdact mdcdsrv

pgm600
create event and
service files

ACTIVITY SERVICESCLIENTS

mclaims mdcd_idmlistmdcdprov

pgm500
create Provider
formats for
mapping

SA/MH
provider
info

fmt_prov

from prior
processing

idmaster

ID Master

Figure 2. Integrating Medicaid and MH/AOD Data, Diagram

11

STEP100: Performs a match-merge by Medicaid ID (when available)

• scores the matches
• stores the results for later processing

STEP200: Performs a equi-join where Social Security Numbers (when available) match

• scores the matches
• sorts the data by State ID and score
• keeps the first obs for each State ID
• sorts the data by Medicaid ID
• stores the results for later processing

STEP300: Performs an equi-join where there is a match with birth date, gender or name

STEP400: Scores the joins

• sorts the data by State ID and score
• keeps the first obs for each State ID
• sorts the data by Medicaid ID
• stores the results for later processing.

STEP500: Interleaves merge, join results (steps 10, 20 & 40) by Medicaid ID and score

• sorts by State ID and SCORE
• keeps the first obs for each State ID
• stores the combined data for later processing
• merges the results with the original non-Medicaid ID data to find patients not in

Medicaid
• stores the non-Medicaid IDs for later processing.

STEP600: Performs a reflexive join on the non-Medicaid Ids

• keeps matches on name or DOB & Gender
• scores the joins
• sorts by State ID and score
• keeps the first obs for each State ID
• interleaves the results with the combined data from step 50
• match merges the results with the non-Medicaid ID
• stores the results for the next step.

STEP700: Performs a match merge with the CLIENT database from the prior run

Figure 3. Integrating Medicaid and MH/AOD Data, Narrative Description

12

Identifying Candidate Architectures

In this section, we identify candidate architectures for the logical data model, the

application architecture, and the distributed system architecture. As was described

previously, the choice of logical data model largely determines the application

architecture that is most appropriate to use, and that in turn determines the distributed

system architecture.

The Relational Model

We look first at the relational data model. The relational model is an obvious candidate

because of its wide acceptance and broad utilization. Ten years ago there was still

debate over the data models that lie at the foundation of database management

systems, the contenders being network, hierarchical and relational models. No one

debates this topic anymore, as the relational model has come to dominate data base

technology. The relational model’s rigorous mathematical foundation provides a basis

for logically proving the correctness and consistency of fundamental database

operations such as insertions, deletions and modifications to complex data structures.

Other models rely on concepts of pointers, recursive hierarchies and directed graphs;

abstractions familiar to computer scientists but opaque to the majority of database

users. The relational model’s rectangular table structures linked by relations, or common

data values, are far more intuitive and accessible than the complex structures and

linkages inherent in other models. With the exception of experimental and exotic

designs, virtually all modern commercial database management systems utilize the

relational model.

Another reason the relational model is an obvious candidate is that some of our data

contributors, that is the States, employ relational databases to hold some of the

databases they will be supplying to us. That makes for convenient import, and assures

that exported data will be readable as well.

SAS

A second obvious candidate for our tasks is SAS, the Statistical Analysis System. Born

in the seventies as a product that merged statistical processing with a data manipulation

language, it has achieved broad acceptance and has largely displaced competing

statistical systems like SPSS and BMDP. It is embraced by both statisticians impressed

with the rigor of its statistical calculations, and analysts and programmers charged with

the typical preliminary tasks of data merging, cleaning and manipulation. Unlike other

statistical packages that support only limited data transformation via interpreted

commands, SAS contains a full fledged, general purpose programming language. SAS

13

provides a very workable framework for the always present tasks of linking separate

data sources into analytical files. SAS is also used by some of our State collaborators

for data manipulation and analysis, once again affording the import/export advantages

described above. SAS has been and continues to be widely used at MEDSTAT for tasks

very similar to the one we confront here.

Other Candidates

There are a number of other candidates for our task, but none that we will seriously

consider. Some of these were mentioned earlier in connection with logical data models.

Data can be stored in raw data format. A number of very large health databases

(including HCFA’s Medicaid Tape-to-Tape and SMRF databases) have been stored and

manipulated as raw data. The huge disadvantage is the amount of work that must be

done writing programs to efficiently manipulate raw data. It is necessary to use a

general purpose programming language like C/C++ on a PC or Unix machine or PL/I on

a mainframe to efficiently process raw data and this is terribly time consuming. It is

estimated that over 100,000 lines of PL/I code were written in the course of the Tape-to-

Tape project. Although there are gateways from some data management programs to

raw data (for example, Microsoft provides an ODBC driver for raw data) such

approaches are grossly inefficient and cannot be considered for our purposes.

PC databases such as RBASE, Dbase, Access and Paradox are compelling because

of their ease of use and low cost. However, they have a number of faults for our

purposes. First, they cannot handle the large volumes of data we will receive. Second,

they have poor data manipulation facilities and we would need to rely on C/C++, which

has the drawbacks stated above. Third, their reporting capabilities are limited.

Lastly there are a number of so-called Fourth Generation Languages, or 4GL’s, that

might be used, such as Progress, Clarion Developer and Focus. These languages

typically combine a very high level procedural language with an underlying proprietary

data model, although some, such as Progress, incorporate native gateways to popular

relational databases like Oracle as well. While useful, these packages are typically

expensive. They are not widely used, which limits their use to a few expert technicians.

Since they are not currently used at CSAT/CMHS, at MEDSTAT or by our State

collaborators, we will not explore them further.

14

Relational Databases - Pros and Cons

The relational database model has a lot to like. It is widely used and understood by

almost all database practitioners. There are numerous commercial packages available

that all operate on variations of the same basic theme. These packages range from

stand-alone PC systems, such as Microsoft Access, through Unix flavors such as Ingres

and mainframe implementations like IBM’s DB2 all the way to high-end, massively

parallel supercomputer implementations like Teradata. Many RDBMS packages, like

Informix and industry leader Oracle, run on everything from PC’s to mainframes, and

even DB2 runs under AIX, IBM’s Unix.

Relational database systems are often used for transaction processing and since the

operations are performed in real time, they are described by the acronym OLTP, for on-

line transaction processing. The relational model, when it is applied properly to a

database problem, serves to decompose a collection of data into multiple tables that

embody normal form. There are five levels to the normal form, and a database in fifth

normal form has been so thoroughly deconstructed that the typical database operations

of insert, delete and update touch as little data in as few tables as possible, which is key

to the rapid processing of transactions. Thus the relational model is ideally suited to

transaction processing, where numerous individual requests make changes to an

exceedingly small fraction of the data, or a query resembles finding a needle in a

haystack. This is the relational model’s strongest asset.

The relational model and its SQL language are powerful enough to accomplish a variety

of data transformation and aggregation tasks, and SQL makes it possible to express

these transformations and aggregations in a concise way. Unlike transaction

processing, data summarization tasks touch most or all of the data with a single query,

examples being consolidation reporting, crosstabulation and univariate or multivariate

statistical analysis. The relational tool for putting normalized (decomposed) tables back

together again is the join. Analytical tasks typically require numerous complex joins to

summarize data. The join is computationally expensive, and relational query optimizers

typically spend most of their effort optimizing joins, which can take a good deal of time

to execute.

This fact has given rise to products targeted at on line analytical processing, or OLAP
for short. This is where the relational model has to stretch a bit to meet the task. There

is continuing debate as to whether a single database product can efficiently support both

transaction processing and analytic activities. Pure OLAP proponents, pushing their

products as competitors to the RDBMS vendors, make a strong case for separating the

two, arguing that a design can be optimized for rapid transaction processing or rapid

15

analytical summarization, but not both. Many relational vendors, Oracle for example,

disagree, and have countered with ROLAP, for Relational On Line Analytical

Processing, and are aggressively pushing their products into the OLAP realm.

As the reader may have assumed, the task we are confronted with much more closely

resembles OLAP than it does OLTP, since our processing is dominated by loading,

editing, matching, joining and summarizing data. To be fair, Oracle, when augmented

with expensive OLAP add-ons does a pretty good job at both. Vendor SYBASE is

working on an OLAP add-on module that will restructure relational data in a transposed
format, that is, by column instead of by row. Theoretically this technique has great

promise, but the product is untested and still under development. Other RDBMS

systems we are familiar with range from mediocre to poor in OLAP performance. This is

a drawback, for our purposes, of the relational data model.

Another drawback is the lack of robust data summarization and analysis measures.

Most versions of SQL, the relational query language, support only limited data

summarization measures. Neither SQL 89 nor the more recent SQL2 supports

univariate statistics other than sum, average (mean), min, max and two versions of

count (or N)4. This is grossly inadequate for even unsophisticated univariate data

summarization, where median and mode, percentiles, and measures of dispersion such

as standard deviation, skewness and kurtosis are commonly employed.

SQL does allow for one-way and n-way frequency distributions, but not for statistical

measures associated with n-way tables, such as chi-square or t tests.5 Clearly, SQL was

not designed for statisticians, and it is even a stretch to say that it supports data

analysis, at least much beyond counts and sums.

In addition, although SQL can be used to create n-way frequency distributions, it cannot

display them in any but the most rudimentary of formats. The PIVOT statement, used in

Microsoft Access SQL to create crosstab tables, is a non-standard extension to SQL

that is not supported in other SQL dialects.6 Many, if not most, relational database

management systems either incorporate or have optionally available report writing
modules to allow for flexible display of data. Of course, these report writers and their

related languages are different between RDBMS implementations, negating the

advantage of SQL’s universal syntax. Lack of standard facilities for data summarization

and display is a major drawback of the relational model for our purposes.

4 Groff and Weinberg. LAN Times Guide to SQL. McGraw Hill, 1994.
5 Frank Lusardi. Database Experts Guide to SQL. McGraw Hill, 1988.
6 Microsoft Access Language Reference. Microsoft Press, 1995.

16

Another problem with the relational model and SQL is the lack of a procedural language

for manipulating the underlying data. SQL is very good at what it does, but when you

reach the limits of it’s capabilities, you have no alternatives. Typically, relational

database vendors have finessed this problem by implementing cursors, a movable

pointer used to access data in a particular table row in the API (applications

programming interface) for their product. Thus programmers can bypass SQL and move

row by row through a table or query result set reading and writing data at will. This

solves the problem, but in so doing we are back to the labor intensive job of coding in

C/C++, PL/I or some other programming language.

Another problem with the relational application architecture as it is delivered by vendors

is the lack of tools for data input and transformation. RDBMS packages typically contain

a tool for bulk data loading which is much faster and more flexible than SQL. While

these tools may allow for simple transformations and reformatting, they do not contain

facilities for things like unpacking variable length records, reading binary and other

mainframe style data formats, translating fields from EBCDIC to ASCII, transforming

dates and times from one format to another and other typical tasks.

In summary, while relational databases provide a compelling data model for a variety of

reasons, their associated application architectures have serious drawbacks for data

summarization and display, as well as data manipulation and transformation.

17

SAS - Pros and Cons

The SAS data model and application architecture have a number of advantages for our

purposes. Like the best of the relational databases, it is capable of handling large

quantities of data, and can do so very efficiently. Originally written in IBM assembler

which accounted for its outstanding performance, in the 80’s it went through a

substantial architectural renovation and was completely rewritten in C, a prescient move

that set the stage for an ambitious cross platform porting spree, with the result that SAS

probably runs on more diverse hardware and operating system platforms (although

Oracle runs a close second) than any other database systems. SAS runs on virtually all

PC, Unix and mainframe computers.

SAS excels at import and export of raw data. The SAS data step incorporates a high

level language that is somewhat of a cross between PL/I and C and a simple,

rectangular underlying data model. Unlike SQL, the language is procedural, allows

arbitrary bi-directional movement through data, and implements state, or memory (such

as flags, counters and accumulators) between rows. This is a much cleaner and easier

alternative to using cursors in a high level language via the relational database API.

SAS provides a very workable framework for the always present tasks of linking

separate data sources into analytical files. This framework consists of sorting and

merging separate files by means of common linking variables, a technique congruent to

the relational join. Variants of this basic merge operation are allowed to the extent that

there are direct SAS analogs of relational equi-joins, left and right inner joins, and outer

joins, or Cartesian product.

So similar is the underlying SAS data model to the relational model that SAS was able to

implement a PROC SQL, in which standard SQL syntax can be applied to native SAS

files. Additionally, SAS has implemented a collection of relational database access

engines tied to vendor specific RDBMSs such as Oracle, Informix and Sybase. These

engines allow SAS data steps and procedures to read and write native relational tables.

SAS incorporates a huge library of transformation and conversion functions that cover

almost all data formats and structures. Reading and writing variable length records and

repeating fields in SAS is easier than in COBOL, where almost all such transgressions

against the laws of clean data structure usually originate.

One of SAS’ strongest points is that it contains a variety of excellent procedures for the

display of data. SAS execution is divided between data steps, which are user written

programs that read, write and transform data, and PROCs, which are pre-written

18

procedures used to summarize, analyze and display data. A few of these procedures

are described below.

• PROC FREQ: Used to create one-way to n-way frequency distributions in a

variety of formats. Includes appropriate statistical measures for one-way and

two-way tables.

• PROC TABULATE: Used to create tabular displays. Allows for the arbitrary

partitioning of a data source by categorical variables, and the application of a

full set of univariate statistics (including median and mode) to the subsets

within partitions. Partitions can be laid out within column, row or page

dimensions.

• PROC UNIVARIATE: Applies the full range of univariate statistics to a data

set, including percentiles and measures of dispersion.

• PROC MEANS: similar to UNIVARIATE, but with an abridged set of

statistics. Faster than UNIVARIATE and with the option to write means and

other measures back to the data set, it is useful for tasks like creating Z

scores or deviations from the mean.

• PROC PLOT, PROC CHART and SAS/GRAPH: Plot and Chart perform their

respective tasks with arbitrary display devices. Graph makes use of high

resolution displays and printers for detailed graphics.

Perhaps the biggest disadvantage of SAS from our point of view is that it is less widely

used and accepted than the relational data model, having a much smaller installed base

than the leading relational software product, Oracle. This limits opportunities for native

import and export of data, although between MEDSTAT and CSAT/CMHS and at least

some of the agencies we’ll work with in the States, those opportunities do exist.

Another drawback is that the SAS logical data model is a less compact and more

redundant representation of data than the very clean normal form representation used in

relational databases. It should be noted that SAS databases can be decomposed into

normal form, just as relational databases can be and often are denormalized for OLAP

tasks. We’ll return to and make use of this fact in the Conclusion. The issue is that the

SAS and relational application architectures are optimized for one or the other data

representations. For example, SAS uses the mechanism of arrays, collections of similar

variables that are iteratively accessed, which would be taboo in a normalized relational

database. Although the SAS data representation is less elegant than a normalized

relational one, it is practical and useful for data summarization and analysis.

19

In summary, we feel that the SAS logical data model is adequate for our purposes. The

data manipulation and transformation capabilities are unsurpassed and crucial for this

project, as are SAS’ data display and analysis functions.

20

Conclusion

We have examined two specific architectures in depth. The relational approach has in

its favor ubiquity, an open, interchangeable architecture, an easy to use, well

understood data model and a compact storage representation. Major liabilities are

potentially high cost, lack of useful data manipulation and transformation tools and weak

analysis and display capabilities. SAS excels in data manipulation and transformation,

has strong analysis and display tools, and has an efficient, if less compact, data

storage representation. Liabilities are a proprietary, quasi-relational data model, and a

data manipulation language far less well known than SQL.

As the reader may have guessed by this point in the discussion, we are leaning strongly

to the use of SAS for intake, transformation, storage and analysis. Our only misgiving is

that the SAS logical data model is not as clean and parsimonious as its relational

counterpart and that there is not nearly as much use and knowledge of SAS as there is

of various relational databases, hindering database export activities.

With this in mind, we would like to recommend a dual, compromise architecture. We

propose that SAS be used for intake, transformation, storage and analysis, but that we

produce a normalized relational format for data export. This makes best use of SAS’

strengths, while keeping options for data dissemination open.

A relational structure, implemented as a set of views and data step transformations, will

be imposed on the final data representation, to bring it into third normal form. In

practice, this will be accomplished by taking the typically wide SAS rows that focus on

multiple entities and contain repeating fields and creating narrower tables, with unique

primary keys and relational links to other tables. We propose to use ERWin, an entity

relationship structuring tool, to create the relational schema and to provide a mechanism

for documentation and easy import of the resulting raw data tables into a variety of

relational database packages.

In this way, the database or subsets thereof can be exported either in SAS format

(transport format) for import by other SAS sites or in relational format (raw data with an

ERWin schema), for import by popular RDBMS packages.

We look forward to CSAT/CMHS’s comments and feedback and would be happy to

discuss or elaborate on any of the issues presented here.

